
You Have an App for That: How to
Build an iPhone App

Ellis Holman
IBM Corp.

Wednesday, August 10, 2011
Session Number 9774

2

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

Things to consider before jumping into
code

• How does a potential user of the app view it ?
• How does the app relate to different cultures?
• What are the limitations of any potential user(s)?
• What are the limitations of the display

presentation?
• Will the app be highly interactive?
• Does your app solve a unique problem?

3

Basic Physical Ergonomics

• Here are a couple of the most important physical-,
cognitive- and ergonomic-related truths about the iPhone
• Fingers are not mouse pointers
• Finger surface area is not equal to one pixel
• Tappable objects that are way too small, make the interface

frustrating to use
• People will not continue to use an app that frustrates them –

SURPRISE!

4

Designing the UI with templates to speed
the process

• Download the iPhone GUI Photoshop template or the
iPhone PSD Vector Kit
• Both are collections of iPhone GUI elements that will save a

lot of time in getting started
• If the layout has been solidified during sketching, drawing up

the screens will be less of a layout exercise and more about
the actual design of the app

5

Thoughts on ergonomic challenges

• Here are some ways to solve these ergonomic challenges:
• Make buttons and other tappable objects bigger
• If making a button bigger is impossible, then enlarge the

clickable area to be bigger then the button itself
• Reduce the number of options on each screen, and make the

selection process sequential
• Implement multi-touch gestures within the interface

6

Think about substance over ‘flash’,
simplicity over complication

Based on which design works better overall, the one on the right wins. The one on the left
looks great when checking it out on a iphone but performs poorly in a real-world context.
Simple is good

7

The more an app resembles a ‘real’ item,
the easier it will be for a user

Most everyone
knows what an
address book is and
how to use it

If the app mimics the
look and feel of a real
one, people will find it
both easy and
comfortable to work
with

Basic design for building iPhone apps

• At a high level, the process for creating
an iPhone application is similar to that
for creating a Mac OS X application

• Both use the same tools and many of
the same basic libraries

• Smaller size of the iPhone screen
means that an application’s user
interface should be well organized
• Always focus on the information the user

needs most

9

The display is at the heart of the user’s
experience

• People view beautiful text, graphics, and media on the display
• They also physically interact with the Multi-Touch screen to drive their

experience (even when they can’t see the screen)
• Although displays of different dimensions and resolutions can have

different effects on user experience with an app, some effects apply to
all iOS-based devices:
• The comfortable minimum size of tappable UI elements is 44 x 44

points.
• The quality of app artwork is very apparent
• The user’s focus is on the content

10

Other language support for the iPhone

• A JAVA J2ME stack has been demonstrated to run on an
iPhone, though it involved jailbreaking

• It is not permissible to install a .NET Framework or similar
runtime on an iPhone
• Using Novell's commercial MonoTouch framework it is

possible to achieve similar results
• MonoTouch uses a custom fork of the Mono Project to

compile all CLI bytecode in .NET to native ARM machine-
code ahead of time

• iOS does not support Adobe Flash.
• Flash movies on web pages cannot be viewed in Mobile

Safari

11

Tools to help you get started building an
app

• Join the Apple iPhone Developer Program ($99)
• Gives you access to software development kit (SDK)

• Get an iPhone
• Get an Intel-based Mac computer with Mac OS X 10.5.5 or

higher
• The SDK runs on this, NOT Windows

• Prepare a Non-Disclosure Agreement
• Download and install the latest version of the iPhone SDK

if you don’t already have it
• A spiral bound notebook to keep notes in and do display

sketches

12

Apple’s software development kit provides the
software ‘tools’ to build an app

Apple provides a software development kit for $99.00
The SDK contains:

• Cocoa Touch which provides an abstraction layer of iOS, for the iPhone written in Objective-C language
• Multi-touch events and controls
• Accelerometer support
• View hierarchy
• Localization (i18n)
• Camera support

• Media
• OpenAl
• audio mixing and recording
• Video playback
• Image file formats
• Quartz
• Core Animation
• OpenGL ES

• Core Services
• Networking
• Embedded SQLite database
• Core Location
• Threads
• CoreMotion

• Mac OS X Kernel
• TCP/IP
• Sockets
• Power management
• File system
• Security

13

Included with the SDK is an iPhone
simulator

• The iPhone Simulator is a program used to emulate the
look and feel of the iPhone on the developer's desktop

• Originally called the Aspen Simulator, it was renamed with
the Beta 2 release of the SDK

• The iPhone Simulator is not an emulator and runs code
generated for an x86 target

• This will give a developer how an app will look without
having to get the app loaded onto an iPhone

14

Typical behaviors of an iPhone
application

Typical behaviors include:
• Initializing the application
• Displaying a window
• Drawing custom content
• Handling touch events
• Performing animations

15

The basis for iPhone apps is Objective-C

• It is a simple computer language designed to enable
sophisticated object-oriented programming.

• Objective-C is defined as a set of extensions to the
standard ANSI C language.

• Additions to C are mostly based on Smalltalk, one of the
first object-oriented programming languages.

• Objective-C consists of several parts:
• An object-oriented programming language
• A library of objects
• A suite of development tools
• A runtime environment

16

Application phases for iOS V4 with
suspension

Because of background applications support in iOS
4,following are the possible state of any third party
application:
•Not running: The application has not been launched
•Inactive: The application is running in background but
not receiving events
•Active: The application is running in foreground and is
receiving events
•Background: Most applications enter this state briefly
on their way to being suspended

•An application that requests extra execution
time may remain in this state for a period of time
•In addition, an application being launched
directly into the background enters this state
instead of the inactive state

•Suspended: The application is in the background but
is not executing code

•The system moves application to this state
automatically and at appropriate times
•While suspended, an application is essentially
freeze-dried in its current state and does not
execute any code
•During low-memory conditions, the system
purges suspended applications without notice to
make more space for the foreground application

17

Fundamental application flow for the
iPhone

Main patterns that you’ll want to consider are:
• Delegation

• a pattern in which one object sends messages to another object
specified as its delegate to ask for input or to notify the delegate that
an event is occurring.

• Model
• Represent data such as SpaceShips and Weapons in a game, ToDo

items and Contacts in a productivity application, or Circles and
Squares in a drawing application

• View
• Objects that know how to display data (model objects) and may allow

the user to edit the data
• Controller

• Objects that mediate between models and views
• Target-Action

• Mechanism enables a view object that presents a control
• An object such as a button or slider—in response to a user event
• Send a message (the action) to another object (the target)

18

Building the user interface

• Next Interface Builder has been around awhile
and is used to design user interfaces

• It allows developers/designers to layout their
user interfaces in a drag-and-drop visual
format instead of having to construct the whole
interface using code

• This can greatly speed up the development
process, and, it can make it possible for non-
developers who are designers to be able to do
their work.

• Its been used to design window layouts for
Mac applications for quite some time.

• Apple engineers have now made it possible to
design iPhone GUIs on it as well!

19

One of the most important architectural details
is to define the application delegate object
• The application delegate object works in tandem with the standard

UIApplication object to respond to changing conditions The application
object does most of the heavy lifting, but the delegate is responsible
for behaviors, including the following:
• Setting up the application’s window and initial user interface
• Performing any additional initialization tasks needed for your custom

data engine
• Opening content associated with the application’s URL schemes
• Responding to changes in the orientation of the device
• Handling low-memory warnings
• Handling system requests to quit the application

• At launch time, the most immediate concern for the delegate object is
to set up and present the application window to the user

• The delegate should also perform any tasks needed to prepare an
application for immediate use, such as restoring the application to a
previous state or creating any required objects

• When the application quits, the delegate needs to perform an orderly
shutdown of the application and save any state information needed for
the next launch cycle20

Using blocks to segment units of work

• Blocks are a segment of code that can be executed at any
time

• Essentially portable and anonymous functions that one
can pass in as arguments of methods and functions or that
can be returned from methods and function

• A block may also be assigned to a variable and then call it
just as you would a function

int (^Multiply)(int, int) = ^(int num1, int num2) {
return num1 * num2;

};

int result = Multiply(7, 4); // result is 28

21

Dealing with strings

• Strings embedded in application code, must be extracted,
localized, and then reinserted back into the code.
• To simplify this process—and to make the maintenance of

application code easier—Mac OS X and iOS provides the
infrastructure needed to separate strings from the code and
place them into resource files where they can be localized
easily

• Resource files that contain localizable strings are referred to as
strings files because of their filename extension, which is
.strings

• When you need to display a string, pass the string to one of the
available string-loading routines

• What returned is the matching value string containing the text
translation that is most appropriate for the current user22

A Word About Memory Management

• iOS is primarily an object-oriented system, so most of the memory you
allocate is in the form of Objective-C objects

• iOS uses a reference counting scheme to know when it is safe to free
up the memory occupied by an object

• When an object is first created, it starts off with a reference count of 1
• Clients receiving that object can opt to retain it, thereby incrementing

its reference count by 1
• If a client retains an object, the client must also release that object

when it is no longer needed
• Releasing an object decrements its reference count by 1
• When an object’s reference count equals 0, the system automatically

reclaims the memory for the object
• There is no garbage collection mechanism, as there is for MAC O/S

v10.5 and later

23

Supporting multiple orientations on the iPhone

• iPhone-only applications may only have one launch image
• PNG format and measure 320 x 480 pixels.
• Launch image file named Default.png.

• For iPhone 4 high resolution, optionally include an
additional launch image
• PNG formate and measure 640 x 960 pixels.
• Name it Default@2x.png
• This image will get picked up by the iOS if your app is

running on an iPhone 4
• Apps not running on an iPhone 4: if both Default.png and

Default@2x.png are provided, iOS will automatically pick
up Default.png as the launch image.

24

Starting the application up
• Every application is responsible for creating a window that spans the entire

screen and for filling that window with content.
• Graphical applications running in iOS do not run side-by-side with other

applications
• Windows provide the drawing surface for your user interface, but view objects

provide the actual content.
• A view object is an instance of the UIView class that draws some content and

responds to interactions with that content.
• iOS defines standard views to represent things such as tables, buttons, text

fields, and other types of interactive controls.
• Any of these views can be added to a window, or custom views can defined

• Use subclassing UIView and implementing some custom drawing and event-
handling code

• At launch time, the goal is to create the application window and display some
initial content as quickly as possible.

• The window is unarchived from the MainWindow.xib nib file.
• When the application reaches a state where it is launched and ready to start

processing events, the UIApplication object sends the delegate an
applicationDidFinishLaunching: message
• This message is the delegate’s cue to put content in its window and perform

any other initialization the application might require

Dealing with gestures

• There may be multiple fingers touching the device at one time
• Use those events to identify complex user gestures
• The system provides help in detecting common gestures such as swipes,
• The application is responsible for detecting more complex gestures.
• When the event system generates a new touch event, it includes

information about the current state of each finger that is either touching or
was just removed from the surface of the device.

• Each event object contains information about all active touches,
• In this way actions of each finger can be monitored with the arrival of

each new event.
• Movements of each finger can be tracked from event to to detect

gestures, which you can apply to the contents of your application.

The property list allows an app to retain
state information

• Property-list files are XML files that organize data into named values
and lists of values using simple data types

• These data types allow creation, transportation, and storage of
structured data in an accessible and efficient way

• Information-property list file commonly referred to as info-plist files,
contain essential information used by your application and iOS.

• Entitlements file define properties that provide an application access
to iOS features (such as push notifications) and secure data (such as
the user’s keychain)

XCode Editor

Using blocks of memory

• Allocating generic blocks of memory—that is, memory not associated
with an object— is done by using the standard malloc library of calls

• As is the case with any memory allocated using malloc, there is a
responsibility for releasing that memory when are done with it by
calling the free function

• The system does not release malloc-based blocks
• Regardless of how memory is allocated memory, managing overall

memory usage is important
• iOS has a virtual memory system, it does not use a swap file

• Code pages can be flushed as needed but an application’s data must
all fit into memory at the same time.

• The system monitors the overall amount of free memory and does
what it can to give your application the memory it needs

• If memory usage becomes too critical though, the system may
terminate your application

• This option is used only as a last resort, to ensure that the system has
enough memory to perform critical operations such as receiving phone
calls

28

Be Prepared to Stop – Don’t stop
programmatically
• iOS applications stop when people press the Home button

to open a different application
• Or use a device feature, such as the phone

• Save user data as soon as possible and as often as
reasonable
• An exit or terminate notification can arrive at any time

• Save the current state when stopping, at the finest level
of detail possible so that people don’t lose their context
when they start the application again
• For example, if your app displays scrolling data, save

the current scroll position
• Never quit an iOS application programmatically because

people tend to interpret this as a crash

Xcode is an integrated development
environment (IDE) for creating apps

30

Tool Bar

P
ro

je
ct

 N
av

ig
at

or

Source Editor

iPhone Simulator

Dealing with the NeXT Interface Builder
(Nib) File

• A view controller loads its nib file in its loadView method
• The nib file can also be loaded using an instance of

NSBundle
• You can learn more about loading nib files in Resource

Programming Guide
• If you initialize a view controller using

initWithNibName:bundle: but you want to perform
additional configuration after the view is loaded

• Override the controller’s viewDidLoad method
• The view controller’s nib file contains three objects, the

File’s Owner proxy, the First Responder proxy, and a view
• You can see them by inspecting the nib file.

31

To iAd or not iAd

• iAd is a mobile advertising platform developed by Apple
Inc. for its iPhone

• Allows third-party developers to directly embed
advertisements into their applications

• User taps on an iAd banner, a full-screen advertisement
appears within the application

• Apple will retain 40% of the ad revenue, the other 60%
going to the developers

• In one case with 69K accesses to iAd, the developer
received $16.05

32

33

QUESTIONS?
Please remember your session

evaluation
Your Feedback is Important to Us

Sources
•Getting Started Creating an iPhone App
http://developer.apple.com/library/ios/#referencelibrary/GettingStarte
d/Creating_an_iPhone_App/_index.html
•Development Tips
•http://www.sitepoint.com/iphone-development-12-tips/
•iPhone Apps Design Mistakes
•http://www.smashingmagazine.com/2009/11/15/iphone-apps-design-
mistakes-disregard-of-context/
•Introduction to iPhone App Design
•http://developer.apple.com/library/ios/#documentation/UserExperien
ce/Conceptual/MobileHIG/Introduction/Introduction.html
•Introduction to Cocoa Objective-C
•http://developer.apple.com/library/ios/#documentation/Cocoa/Conce
ptual/ObjectiveC/Introduction/introObjectiveC.html#//apple_ref/doc/ui
d/TP30001163

34

Sources (continued)
•Introduction to Cocoa Objective-C
•http://developer.apple.com/library/ios/#documentation/Cocoa/Conce
ptual/ObjectiveC/Introduction/introObjectiveC.html#//apple_ref/doc/ui
d/TP30001163
•User Experience Guidelines
•http://developer.apple.com/library/ios/#DOCUMENTATION/UserExpe
rience/Conceptual/MobileHIG/UEBestPractices/UEBestPractices.html

35

